Bacterial lipopolysaccharide directly induces angiogenesis through TRAF6-mediated activation of NF-kappaB and c-Jun N-terminal kinase.
نویسندگان
چکیده
The intracellular pathways by which inflammatory mediators transmit their angiogenic signals is not well studied. The effects of a potent inflammatory mediator, bacterial lipopolysaccharide (LPS), are transmitted through Toll-like receptors (TLRs). A major, although not exclusive, LPS/TLR intracellular signaling pathway is routed through TNF (tumor necrosis factor) receptor associated factor 6 (TRAF6). In this report we demonstrate that LPS directly stimulates endothelial sprouting in vitro. By blocking TRAF6 activity using retroviral expression of a dominant-negative TRAF6 in endothelial cells, we show that TRAF6 is absolutely required for the LPS-initiated angiogenic response in vitro and in vivo. Inhibition of either c-Jun N-terminal kinase (JNK) activity or nuclear factor kappaB (NF-kappaB) activity, downstream of TRAF6, is sufficient to inhibit LPS-induced endothelial sprouting. In contrast, only inhibition of NF-kappaB, but not JNK, activity blocks basic fibroblast growth factor (bFGF)-induced angiogenesis. Our findings thus demonstrate a direct endothelial-stimulatory role of LPS in initiating angiogenesis through activation of TRAF6-dependent signaling pathways.
منابع مشابه
Lipopolysaccharide signals an endothelial apoptosis pathway through TNF receptor-associated factor 6-mediated activation of c-Jun NH2-terminal kinase.
Inflammatory mediators such as TNF and bacterial LPS do not cause significant apoptosis of endothelial cells unless the expression of cytoprotective genes is blocked. In the case of TNF, the transcription factor NF-kappaB conveys an important survival signal. In contrast, even though LPS can also activate NF-kappaB, this signal is dispensable for LPS-inducible cytoprotective activity. LPS intra...
متن کاملLipopolysaccharide initiates a TRAF6-mediated endothelial survival signal.
Similar to tumor necrosis factor (TNF), bacterial lipopolysaccharide (LPS) elicits parallel apoptotic and antiapoptotic pathways in endothelial cells. The overall result is that there is minimal endothelial cell death in response to LPS without inhibition of the cytoprotective pathway. While the TNF-induced death and survival pathways have been relatively well elucidated, much remains to be lea...
متن کاملMal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-kappaB activation by toll-like receptor (TLR)-2 and TLR4.
The Toll-interleukin-1 receptor domain-containing adapter Mal (MyD88 adapter-like protein) is involved in Toll-like receptor (TLR)-2 and TLR4 signal transduction. However, no studies have yet identified a function for Mal distinct from the related adapter MyD88. In this study, we have identified a putative TRAF6 interaction site in Mal but not in MyD88 and we demonstrate that Mal can be co-immu...
متن کاملTAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB.
The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiation, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-kappaB and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK)...
متن کاملThe ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling.
The RING domain protein RNF11 is overexpressed in breast cancers and promotes tumour growth factor-beta (TGF-beta) signalling. RNF11 has been proposed to regulate TGF-beta signalling by interacting with HECT- and SCF-type E3 ligases; however, the role of RNF11 in other signalling pathways is poorly understood. Here, we demonstrate a novel function of RNF11 as a negative regulator of NF-kappaB a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 102 5 شماره
صفحات -
تاریخ انتشار 2003